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chloroacetone and a 2-substituted furan.
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As an extremely important inhibitory neurotransmitter in
mammalian central nervous system, gamma-aminobutyric acid or
GABA (1) has captured much attention in pharmacological re-
search.1 One of the most effective ways to prevent epilepsy is to
use GABA analogs to deactivate enzyme that degrades GABA. Sev-
eral synthetic compounds such as vigabatrin2 (2), gabapentin3 (3),
and pregabalin4 (4) have been used as anticonvulsant drugs.
Among the synthetic GABA analogs in the literature, compounds
with a restricted conformation are very desirable since the orienta-
tion of the two functional groups in three-dimensions is known.
They can provide substantial information on active conformations
of the neurotransmitter that participate in various processes such
as receptor activation, cellular uptake, or enzymatic transamina-
tion.5 Even with many advances, the design and development of
new structurally rigid GABA analogs are still very important.
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The [4+3] cycloaddition reaction has long been known as a con-
venient method for the construction of compounds with a seven-
membered ring,6 especially those with rigid bicyclic frameworks.
As part of our continuous research program in the [4+3]-cycloaddi-
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tion,7 we now wish to demonstrate the utility of this methodology
by reporting the synthesis of a new GABA analog (5) from an ad-
vanced intermediate generated from this reaction.

Our retrosynthetic analysis involved a series of functional group
transformations of oxabicyclic ketones derived from cycloaddition
between oxyallyl zwitterions A and a functionalized furan (Scheme
1).

We began the synthesis by treatment of pentachloroacetone (7)
with 2-substituted furans (Scheme 2) under the conditions devel-
oped by Föhlisch.8 The intermediate oxyallyl zwitterion A reacted
with electron-rich furans to afford cycloadducts with an oxabicy-
clic framework in moderate yields. In order to simplify the follow-
ing protection–deprotection strategies, we decided to pursue the
synthesis with 2-(benzyloxymethyl)furan (6)9 even though the
reaction of 2-(dimethoxymethyl)furan10 was quite effective. It is
worth-mentioning that this reaction with furans bearing an elec-
tron-withdrawing group, such as methyl or benzyl furan-2-carbox-
ylate, resulted only in recovery of the starting diene and
decomposition of the pentachloroacetone. The reductive dehalo-
genation of the relatively unstable tetrachloroketone 8 took place
smoothly using zinc powder and copper(I) acetate in saturated
methanolic ammonium chloride solution, affording 9 in 87%
yield.11

With the intermediate 9 in hand, we carried out the functional
group manipulation outlined in Scheme 3. A highly stereoselective
reduction of ketone 9 was achieved using a bulky borane such as L-
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Scheme 1. Retrosynthesis of 5.
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Scheme 2. Synthesis of key [4+3]-cycloadduct.
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Scheme 3. Synthesis of 5.
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Selectride�. The analysis of the 1H NMR spectrum of a crude prod-
uct revealed that a single diastereomer was produced.12 The hydro-
xyl group in 10 was subsequently transformed into a p-
toluenesulfonate ester. A facile removal of the benzyl group and
a hydrogenation/hydrogenolysis afforded alcohol 12 in one simple
operation.

After extensive screening, it was found that many oxidizing
conditions, especially the acidic ones, tended to give low yields
in the attempted oxidation of the primary alcohol 12 to the corre-
sponding carboxylic acid. We suspected that protonation of the oxa
bridge leading to decomposition was responsible for the inefficient
reaction. To our delight, we found that the alcohol 12 could be oxi-
dized to a corresponding carboxylic acid in nearly quantitative
yield using NaIO4 and RuCl3.13 The crude product was very clean
as characterized by both 1H and 13C NMR. Transformation of this
carboxylic acid into benzyl ester 13 was accomplished by treat-
ment with Cs2CO3 and benzyl bromide. Upon heating this with
NaN3 in DMF, the p-toluenesulfonate group in 13 was converted
into an azide group with inversion of configuration. Finally,
hydrogenolysis of the benzyl ester and reduction of the azide were
carried out in one-pot to afford c-amino butyric acid 5 in good
yield.14

In conclusion, we have successfully synthesized a new analog of
GABA from a [4+3]-cycloaddition product. This compound has a ri-
gid skeleton with a restricted conformation about the amino and
carboxylic acid functional groups. The synthesis should serve as a
paradigm for future work, since the asymmetric [4+3]-cycloaddi-
tion is known15 and a wide variety of structural possibilities exist
for the cycloaddition. Moreover, the [4+3]-cycloadducts can pos-
sess a variety of functional groups that are subject to elaboration.
All of these factors point to an opportunity to make diverse li-
braries of GABA analogs using this approach. Further results will
be reported in due course.
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